3-D Imaging Reveals Details of Volcanic Flows (Page 2)


Previous studies of the Mauna Loa and Kilauea eruptions focused almost exclusively on the main flow channels, but the team's new scans now expand the data set to include often-overlooked but significant side tributaries, said Hannah Dietterich, a graduate student working with Cashman at the University of Oregon.

Whole Landscape View

The new data — which include up-close analyses of the shapes and surface textures of the lava tributaries — will add to the body of information that hazard-management groups use to predict the behavior of future flows, including the speed and direction of potentially damaging tributaries.

Scientists believe they've discovered the largest volcano on Earth! But, as big as it is, it's still not the biggest one out there. Trace looks at the greatest volcanoes in our solar system.

"No one has ever tried to look at where the lava is going within the flow in terms of places where it is thickening versus thinning, so this is a more complete view," Dietterich told LiveScience. "It's not a cross section, and it's not an estimate on top of an old topographic map, which is what you usually have."

Laser scanning technology is fairly expensive, but the resulting scans can be repurposed by researchers in fields of science entirely unrelated to volcanology, Cashman said. Geologists might choose to strip away forests to see lava flows, while forest biologists may choose to keep the trees and study their distribution for ecological assessments.

"The data are actually being widely used by anyone who is interested in topography and landscape," Cashman told LiveScience.

The team's work in Hawaii will be published in an American Geophysical Union Monograph on Hawaiian volcanoes in 2014.

Get more from LiveScience

Original article on LiveScience. Copyright 2013 LiveScience, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Tags maps lasers
Invalid Email