DNA-Powered Nanotrain Builds Its Own Tracks

//

Molecule-sized shuttles that build their own micro-tracks then use those pathways to deliver compounds from one location to another, says the University of Oxford research team that created the nano-vehicles.

Such networks could carry medicine to precise locations of disease or they could be used to transport molecular materials to places in the body where new structures need to be built.

Top 10 Uses For The World’s Strongest Material

The team used kinesins, which are “motor” proteins that can carry other molecules and assemble them, like a train car carrying a crane and supply of rails to build tracks. Physics graduate student Adam Wollman and his team put two kinesins together, called assemblers. The proteins built “tracks” out of artificial, non-living DNA. The tracks were arranged in a pattern like a wagon wheel with spokes.

The scientists then used kinesin molecules as “shuttles,” which worked like boxcars to deliver a fluorescent green dye. Adding adenosine triphosphate (ATP), which cells use to transport energy, made the kinesins carrying the dye spread out along the hub and spokes.

After the kinesin “boxcars” had settled in place, the scientists added ATP again. This time the kinesins carried the dye to the central hub of the wheel.

To reverse the process, the team added a signaling molecule, which told the kinesins to take the dye out of the central hub and release it, allowing it to disperse. Another set of signal molecules told the kinesin assemblers to break up their track network when their job was done. The whole process is seen in this video.

Nanocapsules Take You From Sloshed To Sober

The inspiration came from fish. Some fish species have cells called melanophores. Melanophores have the same “track” system, a hub-and-spoke configuration connecting skin cells. When the fish wants to change its color — say in response to a threat — motor proteins carry pigment to the central point, the hub, which might be in a single skin cell. Since the pigment is now gone from the rest of the cells surrounding that hub, the skin is transparent and the fish looks lighter.

This experiment involved dye, but the same thing could be applied to a lot of other molecules. It’s also a good proof-of-concept for using DNA as a building block and assembler for molecule-sized machines.

The work appeared in the journal Nature Nanotechnology.

via Oxford University

Credit: Adam Wollman / Oxford University

 

DISCOVERYnewsletter
 
Invalid Email