Could a Space Telescope Help Us Grasp Reality?

This multi-frequency all-sky image of the microwave sky has been composed using data from Planck covering the electromagnetic spectrum from 30 GHz to 857 GHz.
ESA/ LFI & HFI Consortia

Cosmic Inflation

During its run, Planck has sifted through a weak bath of microwave light that pervades our universe. This bath of light, an almost perfectly homogenous funk of photons leftover from our cosmos’ younger, denser years, is dubbed cosmic microwave background (CMB) radiation. The mysteries of the very early universe hide in the tiny irregularities and faint patterns in this universal backdrop of low energy radiation. Signatures of an exotic tweak to the original Big Bang theory called cosmic inflation, formulated to rid the original theory of some of its baggage, could be among them.

Proponents of inflation propose that, in the first fraction of a second, the universe underwent a brief, but extraordinary expansion, a kind of exponentially “Bigger Bang.” Imagine blowing up a balloon to the size of the universe in the blink of an eye -- and you wouldn’t have truly captured the process. But it turns out this exponentially wilder picture dissolves many of the snaggy problems of the original theory.

ANALYSIS: Cosmic Rebirth Encoded in Background Radiation?

As an example, consider that space itself can bend in the presence matter or, more precisely, mass. This is actually the phenomenon we call gravity. Locally, the sun warps the space in our solar system and Earth rides this bent space like an astrophysical slide in an orbit around the star.

Similarly, an entire universe filled with matter and radiation can do some large-scale bending. In fact, on paper there are actually infinitely more ways for a universe to exhibit some large-scale curvature than for it to have no global bending.

ANALYSIS: Planck Stares Through Our Dusty Milky Way

Oddly enough, the universe we live in looks eerily flat. The original Big Bang model can only attribute this to an unexplained, delicate initial arrangement of the matter and radiation in our universe that prevented any large-scale curvature.

If a process like inflation occurred, the flatness of our universe is explained more naturally. In the way a wrinkled balloon and a smooth balloon begin to become indistinguishable if you inflate them enough, an exponentially inflated universe would no longer require a delicately arranged initial stage with respect to the arrangement of matter and radiation. Our cosmos could have begun with nearly any curvature and emerged looking flat after a period of inflation.

This back and forth between the original Big Bang model and cosmological models including a period of inflation continues, with inflation continually providing more natural mechanisms for otherwise unexplained facts. On paper, inflation is a big idea. On a hard drive in Europe, it could be exponentially bigger.

Page 1 / 2 / 3
Recommended for you