From the Deepest Coma, New Brain Activity Found


When a patient's brain falls completely silent, and electrical recordings devices show a flat line, reflecting a lack of brain activity, doctors consider the patient to have reached the deepest stage of a coma. However, new findings suggest there can be a coma stage even deeper than this flat line -- and that brain activity can ramp up again from this state.

In the case of one patient in a drug-induced coma, and in subsequent experiments on cats, the researchers found that after deepening the coma by administering a higher dose of drugs, the silent brain started showing minimum but widespread neural activity across the brain, according to the study published today (Sept. 18) in the journal PLOS ONE.

Scientists are getting a better-than-ever look inside the human brain, thanks to Europe's Big Brain Project.

PHOTOS: Small Worlds Never Before Seen

The findings were based on measures of the brain's electrical activity, detected by electroencephalography (EEG), which shows various waveforms. In comatose patients, depending on the stage of their coma, the waveforms are altered. As the coma deepens, the EEG device will eventually show a flat line instead of a wave -- this stage is considered to be the turning point between a living brain and a deceased brain.

"Flat line was the deepest known form of coma," said study researcher Florin Amzica, neurophysiologist at Université de Montréal.

The new study shows "there's a deeper form of coma that goes beyond the flat line, and during this state of very deep coma, cortical activity revives," Amzica said. He noted the findings apply to patients in a medically induced coma with healthy brains that are receiving blood and oxygen. The conclusions may not extend to cases of comatose patients who have suffered major brain damage, he said.

The newly discovered coma state is characterized by electrical waves called Nu-complexes that are unlike other waveforms generated by the brain during known coma states, sleep or wakefulness. These waves originate in a deep brain region called the hippocampus, and then spread across the cortex (the brain’s outermost layer), according to the study.

Recommended for you