Dead Plants Hold Earthquake Secrets

//

With a few tricks borrowed from the oil industry, scientists are hoping to one day better understand why earthquakes start and stop.

Geologists would love to know what controls earthquakes. But one of the best ways to answer that question — drilling into faults — is expensive and difficult. An easier alternative is to study faults exposed on Earth's surface, and look at "fossilized" earthquakes preserved along the faults.

But faults can be several feet wide and filled with crushed-up rock, or they can be inch-thick cracks. How does someone walk up to a crack, point a finger at it and determine an earthquake occurred there?

Earth Perspectives Through the Ages: Photos

It isn't terribly uncommon for some animals to predict storms, but is it possible for them to predict, say, an earthquake?

Sometimes, the tremendous heat created during an earthquake melts rock inside a fault. "That was the gold standard," said Heather Savage, a geophysicist at Lamont-Doherty Earth Observatory in New York. "When you get the melt, it means the fault slipped fast."

(Faults get hot because of friction. Just as rubbing your hands warms them on a winter's day, earthquakes heat the Earth when two sides of a fault slide past each other during a quake.)

But there are plenty of old faults exposed on Earth's surface and very little of this melted rock, called pseudotachylyte, Savage said.

So, over the past few years, Savage and her colleagues have devised a new way to find old earthquakes. It turns out that earthquakes can "cook" dead plants and algae trapped in a fault, similar to how organic material transforms over eons into oil.

California to Test GPS Earthquake Warning System

And because heat from an earthquake is linked to fault strength, Savage is also testing whether this cooked organic matter reveals clues about fault strength during past earthquakes. [Image Gallery: This Millennium's Destructive Earthquakes]

"Temperature rise during an earthquake says something about the strength of the fault when it was slipping, and that is a big unknown in earthquake science," Savage told LiveScience's OurAmazingPlanet. "These kinds of questions are really fundamental if we're ever going to get better at making accurate earthquake predictions."

Earthquake thermometers

The technique could prove especially handy at subduction zones — the source of the world's biggest earthquakes — which are often rich in organic material scraped off the ocean floor.

In Alaska, a 60-million-year old subduction zone between the Pacific and North American plates now sits exposed above shoreline at Pasagshak Point on Kodiak Island. This is one of the only places in the world where pseudotachylyte is found on a subduction zone. Savage and her colleagues tested their earthquake "biomarker" method here, comparing the temperature recorded by organic matter to that from the pseudotachylyte at one section of the fault.