Penguin Huddles Move Like Waves


When male emperor penguins face the minus-58-degrees-Fahrenheit (minus 50 degrees Celsius), 120-mph (200 km/h) winds of Antarctic winters, the birds rely on their neighbors' bodies to keep themselves — and the eggs that they protect in a pouch near their feet — alive and warm.

Cute little seahorses are DEATH MACHINES!

Maintaining a massive huddle of thousands of penguins may sound fairly simple, but sticking together in a pack so large turns out to be quite complicated: When one penguin moves a single step, the rest must also move to accommodate the open space and stay warm. In this particular species of penguin, males play the unusual gender role of incubating eggs, so it is especially crucial that they maintain warmth during cold winters.

Top 10 Weird Ways Animals Stay Warm in Winter

Previous research has suggested that individual penguins within a huddle regularly make small movements roughly every 30 to 60 seconds, travelling between 2 and 4 inches (5 and 10 centimeters) with each step. But researchers haven't understood the physics behind how all of these moving parts stick together as a single unit.

Now, biologists and physicists based at the University of Erlangen-Nuremberg in Germany have collaborated to create mathematical models based on time-lapse camera footage of emperor penguins to try to understand the physics behind the huddles. (Video: Watch Massive Emperor Penguin Huddle Shuffle as a Wave)

"If you look at the huddle in real-time, it seems very steady — every penguin seems to stay at a fixed location," study co-author Richard Gerum told LiveScience. "We tried with our research to investigate what reorganization processes are going on inside the huddle and how they can merge between simple interactions between penguins."

Recommended for you